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Abstract
Unprecedented rate of growth in the number of vehicles

has resulted in acute road congestion problems worldwide.
Better traffic flow management, based on enhanced traffic
monitoring, is being tried by city authorities. In many de-
veloping countries, the situation is worse because of greater
skew in growth of traffic vs the road infrastructure. Further,
the existing traffic monitoring techniques perform poorly in
the chaotic non-lane based traffic here.

In this paper, we presentKyun1 Queue, a sensor network
system for real time traffic queue monitoring. Compared to
existing systems, it has several advantages: it (a) works in
chaotic traffic, (b) does not interrupt traffic flow during its
installation and maintenance and (c) incurs low cost. Our
contributions in this paper are four-fold. (1) We propose
a new mechanism to sense road occupancy based on vari-
ation in RF link characteristics, when line of sight between
a transmitter-receiver pair is obstructed. (2) We design algo-
rithms to classify traffic states into congested or free-flowing
at time scales of 20 seconds with above 90% accuracy. (3)
We design and implement the embedded platforms needed
to do the sensing, computation and communication to form
a network of sensors. This network can correlate the traffic
state classification decisions of individual sensors, to detect
multiple levels of traffic congestion or traffic queue length
on a given stretch of road, in real time. (4) Deployment of
our system on a Mumbai road, after careful consideration of
issues like localization and interference, gives correct esti-
mates of traffic queue lengths, validated against 9 hours of
image-based ground truth. Our system can provide input to
several traffic management applications like traffic light con-
trol, incident detection, and congestion monitoring.

1kyun, pronounced as ’few’ starting with ’k’ instead of ’f’, means ’why’
in Hindi
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1 Introduction
The problem of road congestion is currently plaguing

most cities in the world. Long traffic queues at signalized
intersections cause unpredictable travel times and fuel inef-
ficiency [1, 2]. The problem is felt more acutely in grow-
ing economies like India, primarily because infrastructure
growth is slow compared to the growth in vehicles due to
space and cost constraints.

Secondly, automated traffic management solutions, de-
veloped for western traffic, are at best an accidental fit for
roads in developing countries. Traffic in many developing
regions is distinctly different from western roads in two ways
(see Fig. 1): it is (1) non-lane based and (2) highly het-
erogeneous. Four wheeler heavy vehicles like buses and
trucks, four wheeler light vehicles like cars, three wheeler
auto-rickshaws and two-wheeler motorcycles ply the same
road, intermingled with each other, without any lane disci-
pline [3].2

An ideal traffic sensing system for developing regions has
the following stringent requirements: (1) it should sense road
occupancy even if traffic is chaotic and non-lane based, (2)
should be deployable without interrupting traffic flow, (3)
be capable of real time sensing and classification to support
applications like traffic signal control and (4) should have
low installation and maintenance costs. Section 2 discusses
the shortcomings of existing sensing systems like magnetic
loops, camera, infrared sensors, acoustic sensors and probe
sensors, vis-a-vis these requirements.

In this paper, we presentKyunQueue, a sensor network
system for real time traffic queue monitoring. We build a new
mechanism to sense road occupancy, based on how RF link
quality suffers in absence of line of sight. Our system com-
prises of an IEEE 802.15.4 transmitter-receiver pair across
the road, where the transmitter continuously sends packets
and the receiver measures metrics like signal strength and
packet reception ratio. We show that these metrics show a
strong correlation with the occupancy level on the road be-
tween them. We investigate which wireless link characteris-
tics, what time windows and what algorithms give a highly
accurate real time classification of traffic states. Our system
gives above 90% binary classification accuracy on 16 hours
of data from two roads in Mumbai.

2 [3] has several representative videos of chaotic traffic at
http://www.cse.iitb.ac.in/r̃iju/rss-videos/
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Figure 1: Chaotic traffic (source [4]) Figure 2: Lane based traffic Figure 3: Issues with infrared

Building on this binary classification of traffic states us-
ing one pair of sensors, we construct a linear array of such
sensors. This can detect the length of a queue or the de-
gree of congestion on a given road stretch. We design and
build appropriate embedded platforms to do (1) sensing and
computation for binary classification, (2) communication to
combine the decisions of multiple sensors to know the length
of traffic queue and (3) communication of the queue length
values to a remote server.

Our system, deployed on a Mumbai road for 9 hours, pe-
riodically (every 30 secs in our deployment) reports traffic
queue length values to a remote server. Manual examination
of the corresponding 9 hours of image-based ground truth,
gives maximum accuracy of our queue estimates to be 96%
and minimum accuracy to be 74%. These queue estimates
can be potentially used in a range of applications such as:
automating traffic light control, detecting bottlenecks or cre-
ating congestion maps of a city.

The rest of the paper is organized as follows. Section 2
discusses the existing traffic sensing solutions. Our proposed
sensing technique and the real time traffic state classifica-
tion algorithms based on it, are discussed in Section 3. The
design of our sensor network is detailed in Section 4 and
hardware prototypes are described in Section 5. We present
the deployment based evaluation of our system in Section 6.
Finally we discuss the issues of sensor localization, interfer-
ence and power consumption, before concluding the paper.

2 Related work
Automated traffic management solutions have been de-

ployed in many developed countries since several years. In
this section, we discuss the traffic sensing methods primarily
used to provide input to the traffic management systems and
their usability in chaotic traffic.

Loop detectors -There are a lot of research projects [5, 7]
and several deployed systems [6] that do vehicle counting us-
ing magnetic loops under the road. A vehicle loop detector
costs $700 for a loop, $2500 for a controller, $5000 for a
controller cabinet and 10% of the original installation cost
for annual maintenance [1]. Loops need to be placed under
the road. Digging up roads to install and maintain the in-
frastructure intrudes into traffic flow. Also re-laying the road
surface needs re-laying the sensors. Moreover, loops have
been traditionally placed under each lane as seen in Fig. 2(a).
How should the placement be in absence of lanes is yet to be
explored.

In comparison, our sensors are to be placed on roadside,

without affecting the flow of traffic. We can sense road occu-
pancy even if traffic is chaotic and non-lane based. Our tech-
nique is cheap, with each sensor pair costing about $200.
This is the cost of prototype using off-the-shelf modules,
which can further reduce with customized design. Each pair
gives a binary classification of traffic state as free-flow or
congested. To know length of queue, we need an array of
sensor pairs. We can cover about 200 meters of road at about
$1200.

Image sensors -Video surveillance based traffic moni-
toring is fairly common [8]. [17] gives a comprehensive sur-
vey of the major computer vision techniques used in traffic
applications. But the traditional setting for which vision al-
gorithms exist can be seen in Fig. 2(b). For usability in de-
veloping countries, algorithms are needed for scenarios like
Fig. 1. [18] is a preliminary work on image processing algo-
rithms for chaotic traffic sensing. The algorithms are offline,
so the trade-off between computation and communication is
not yet understood. Also the sensing accuracy itself has been
tested on only 2 minutes of video clip. [19] is another re-
cent work to use low quality images from CCTV for traf-
fic sensing. But computational overhead, real-timeliness and
accuracy of the designed algorithms are yet to be evaluated.
Thus though image-based sensing shows promise, with ad-
vantages such as ease of deployment and potential low cost,
there are several aspects that need careful evaluation and val-
idation, especially in chaotic traffic conditions.

In comparison, we present an alternative traffic sensing
system that works in chaotic non-lane based traffic. We have
thoroughly evaluated the sensing accuracy on 16 hours of
traffic in Mumbai. The algorithms are very low overhead
and we have implemented them on low end embedded sensor
platforms. Sensing and computation are done on the road.
Only the traffic queue length values are communicated to
the remote server, avoiding the communication overhead of
video transfer.

Infrared sensors -Active infrared sensors placed across
the road suffer beam cuts by vehicular movement in be-
tween. [10] is a commercial product that measures speed,
length and lanes of vehicles from beam cuts. However, in-
frared propagates as a ray, and hence is strictly line of sight
(LOS) based. This makes it overly sensitive to even small
obstacles. When we tried using it on Mumbai roads, pedes-
trians who frequently use the roads (Fig. 3(a)) or irregulari-
ties of the road surface (Fig. 3(b)) would not allow the tx-rx
pair to communicate. Also [10] has been tested only in lane-
based traffic. Beam cuts in high density, non-lane based and
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Technique Drawbacks
loop detectors [5, 6], high cost, under-the-road installation,
magnetic sensors [7] do not currently support chaotic traffic

video and images [8, 9] attractive option for exploration,
but no proven solutions for chaotic traffic thus far

potentially high computation and/or
communication overhead for chaotic traffic

IR sensors [10] pedestrians, road surface irregularities and non-lane
based vehicular movement cause spurious beam cuts

acoustic sensors [11, 12, 3] high training overhead, slow response
probe sensors [1, 13, 14, 15, 16] useful for complementary applications,

but too sparse and noisy to allow micro management of road networks

Table 1: Drawbacks of existing techniques for chaotic traffic management

heterogeneous traffic as seen in Fig. 1, would need careful
study to be used for chaotic traffic measurement.

The setup of sensor pair across road in our system uses
802.15.4 radios which have a spread propagation model, in-
stead of ray propagation model of infrared. This makes our
technique robust to noise and thus suitable for disorderly
road conditions such as in Fig. 1. This robustness is evident
from the rigorous empirical evaluation of our binary traffic
state classification over 16 hours of chaotic traffic data. We
also enhance the pairwise sensing to an array of sensors and
detect length of queues, an aspect not examined in the IR-
based systems.

Acoustic sensors -Some recent research is being done to
use acoustic sensors for traffic state estimation, especially in
developing regions, where traffic being chaotic is noisy [12].
But standing traffic does not have any uniform sound sig-
nature and depends largely on the driver behavior and type
of vehicles. For example, if vehicles are standing in a long
queue awaiting a green signal, many drivers might just shut
down the engines and wait silently or might blow honk im-
patiently, producing two very different sound signatures for
same traffic state. This reduces the sensing accuracy [3].
Also, to attain a valid signature correlating to a traffic state,
sensing time window of at least a minute or so is needed,
making these systems slow in response.

In comparison, our technique works in the order of 10-
20 seconds. The classification accuracy is also much higher
than acoustic, as vehicles being heavy metallic obstacles al-
ways affect RF signal quality. This high accuracy also makes
it possible, to take the binary classification to a multilevel
classification using an array of RF sensors to know length of
queue on a road. Achieving this with low accuracy acoustic
sensors would be tricky.

Probe sensors -Significant research is being done to
leverage cell phones and participatory sensing to generate
traffic related information. Focus has been given to research
both in networking issues [20, 21, 22] and machine learning
issues [23, 1, 15]. But participatory sensing data is inher-
ently noisy [24]. Also probe vehicles might not be present at
a given intersection at all times. Travel time estimates, transit
vehicle information and congestion maps to be disseminated
to commuters for route selection, can tolerate aperiodicity
and noise. Such commuter applications are thus highly suit-

able using probe data.
Our work is aimed at providing strictly periodic, accu-

rate input to traffic management systems. Our system, based
on static sensors, would potentially be used at some key
intersections of a city, where intelligent and adaptive con-
trol would positively affect traffic flow. This is orthogonal
and complementary to the commuter applications handled
by probe sensing.

The drawbacks of existing techniques are summarized in
Table 1. Some techniques like loops and acoustic sensing
have clear disadvantages. Some like probe sensors are ill-
suited for the particular applications that we are targeting
in this paper. Some others like image and infrared sensing
might work after adaptation for chaotic traffic, but there is
no working adaptation till date.

3 Traffic sensing with wireless across road
In this paper, we wish to design a system for traffic queue

length measurement in chaotic road conditions. This has sev-
eral potential applications like traffic light control, incident
detection, and congestion monitoring. An important point
to note here is that, at almost all intersections in developing
countries, a variety of vehicles stand as a coagulated mass
waiting for green signal (see Fig. 1). On getting green sig-
nal, they all move forward almost bumper to bumper, with
little variability in speeds. So queue length is proportional
to traffic volume, the road width being the proportionality
constant. We thus assume, as is intuitive, that finer granu-
larity information like exact vehicle counts are unnecessary.
To tune traffic lights proportional to waiting traffic volumes,
queue lengths are sufficient. Thus we aim to detect road
occupancy in chaotic traffic, and build upon that to detect
length of queues.

It is well known in the wireless networking domain, that
characteristics of wireless links like 802.11 and 802.15.4 are
affected in the absence of LOS [25]. Obstacles cause reflec-
tion, absorption and scattering of the RF signal, degrading
the link quality. Researchers have exploited these vagaries of
RF links in different kinds of application scenarios, the most
common being that for indoor localization [26, 27, 28, 29].

The effects of vehicular traffic on wireless links were
briefly studied in [30], where the authors seeked to quantify
the link quality in harsh deployment scenarios, like tunnels
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Figure 4: Wireless communication
across road
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Figure 5: CDF of RSSI (dBm)
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Figure 6: CDF of PRR

with traffic moving through them. In this paper, we want to
apply this effect of traffic on wireless links for a completely
novel application, to measure road traffic density. The basic
intuition is as follows. If a wireless transmitter-receiver pair
is kept across a road and made to communicate, the link char-
acteristics, observed at the receiver, should be affected by the
vehicles on the road. But unlike IR, these wireless signals
follow the spread model of propagation, and hence should
not be overly sensitive to small obstacles. Can traffic states
be quantitatively inferred from RF link characteristics? Can
classifications be done in order of tens of seconds to support
applications like traffic light control? What wireless features
and algorithms can be used for high classification accuracy?
In this section, we seek to answer these questions.

3.1 Does road traffic affect wireless links?
To answer this, we start with some proof-of-concept ex-

periments. We create a setup shown in Fig. 4 on Adi
Shankaracharya Marg, a road in Mumbai, about 25m wide
in each direction. We keep two 802.15.4 compliant Telosb
motes across the road, one as transmitter (tx) and the other
as receiver (rx), on a line perpendicular to the length of the
road. The tx sends 25 packets per second, each having a pay-
load of 100 bytes, at−25dBm transmit power. The rx logs
the number of packets received and Received Signal Strength
Indicator (RSSI) and Link Quality Indicator (LQI) for each
received packet. One person stands on the roadside footpath
holding the rx and another stands across the road, on the road
divider, with the tx, both rx and tx being at a height of about
0.5 m from the ground. These two persons also observe the
road to note the ground truth of the traffic situation. We col-
lect 14 logs of 5 minutes each from about 5:30 pm to 7 pm.

Figures 5 and 6 show the CDF of RSSI and packet re-
ception rate respectively. Each graph shows 14 plots: each
a CDF calculated over 5 minutes. As seen from the figures,
the curves in each graph can be classified into three distinct
groups –Group1 between 5:37-6:21pm,Group2 between
6:22-6:27pm andGroup3between 6:30-7:05pm. The ground
truth of traffic state noted is free-flowing till 6:20pm, slow for
about 5 minutes and then heavily congested till the end of the
experiment. ThusGroup1corresponds to free-flowing traf-
fic, Group2 to slowly moving traffic, intermediate between
free-flowing and congested andGroup3to heavily congested
traffic. The high correlation of the CDFs with traffic state is
apparent visually. For e.g., (a) the 50th and 70th percentiles

of RSSI are around -93dBm in congestion and -78dBm in
free-flow. (b) the 60th and 80th percentiles of reception rate
are around 0 packets/sec in congestion and 24 packets/sec in
free-flow. We see similar trends in 16 hours of data collected
over three weeks, from two Mumbai roads. Sample videos
of free-flowing and congested traffic are available at [31].

Figure 10: Mismatch of sensing and traffic state

3.2 Real-time classification of traffic states
As seen above, wireless logs of 5 minutes duration show

good visual difference in the distributions of wireless char-
acteristics, between free-flowing and congested traffic. Ap-
plications like congestion maps and bottleneck detection can
be handled at a time scale as large as 5 minutes, but adap-
tive traffic light control would intuitively need faster inputs.
From our observations of Mumbai and Bengaluru traffic
lights, traffic signal cycles typically last for about a minute.
This one minute cycle time is divided into slots, in which
different contending flows get their respective green times.
Green time for any flow lasts for about 10-30 secs, though it
can go over a minute for critical flows.

Any system like ours, aiming to provide traffic state infor-
mation to traffic lights, would need an input parameter about
the frequency at which traffic queue estimates are needed.
We wish to determine the lowest classification time window
at which a sufficiently high accuracy (say 90%) can be ob-
tained. Very low time windows give noisy predictions. This
noise comes from two sources - (a) the inherent stochastic
nature of wireless links which causes link quality to be in-
termittently bad though the tx-rx are in perfect line of sight
(b) the instantaneous traffic condition between the tx-rx are
contrary to the actual traffic state. For e.g. tx-rx may be
in line of sight between several standing vehicles in conges-
tion (Fig. 10(a)) or several heavy vehicles may pass the tx-
rx pair simultaneously in free-flow obstructing line of sight
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Figure 7: FC algorithm training error
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Figure 8: SC algorithm training error
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Figure 9: Choice of features

(Fig. 10(b)). Thus we need to choose the classification time
window, henceforth referred to ast, carefully.

3.3 Labeled data-set for evaluation
To evaluate our choices oft, features and algorithms

for real time traffic state classification, we need a data-set
with labeled ground truth. For this purpose, we use the
16 hours data-set, collected using the setup in Fig. 4. The
data is collected from two Mumbai roads, a 25 m wide Adi
Shankaracharya Marg, henceforth referred to as wide-road
and another road, 8 m in width, henceforth referred to as nar-
row road. Specifically we have 13676 secs of wide-road data
labeled as free-flow and 14992 secs labeled as congested.
Similarly, we have 13486 secs of narrow-road data labeled as
free-flow and 16678 secs labeled as congested. The labeling
was done at a larger time-scale of 5 minutes to reduce man-
ual overhead and all the one second long windows, belonging
to the same 5 minute window were uniformly labeled. The
roads and the times of day of data collection were chosen
in a way that traffic states did not toggle within 5 minutes.
Thus the error in ground truth observation, even if present,
is very small. Representative videos, showing free-flow and
congested traffic on the wide road, can be found at [31].

3.4 Classification algorithms
We use machine learning algorithms to do traffic state

classification. In this paper, we concentrate onbinary traf-
fic state classification:congested traffic, when vehicles have
to brake and stop vsfree-flowing traffic, when vehicles move
according to the driver’s intended speed, bounded by the road
speed limit. We show that this binary classification is suf-
ficient for queue length estimation, using binary decisions
from a linear array of multiple sensor pairs.

To decide what binary classifier to use, the trade-off is be-
tween (1) accuracy of classification, (2) implementability on
a low end embedded platform, (3) complexity of the classi-
fier models and (4) overhead of model training. Linear hy-
perplane classifiers are simple enough to implement on our
platform (TI’s C5505) and to train and test in near real time.
SVM and K-Means-based classifiers belong to this category
and are state-of-the-art supervized and unsupervized learn-
ing algorithms respectively. K-Means, being unsupervized,
has the additional advantage of minimal manual labeling of
training data. We build four possible algorithms based on
these two classifiers and subsequently choose one based on

accuracy and labeling overhead.
FeatureClassifier (FC) algorithm- In this algorithm, the

wireless data for a certaint is transformed into a feature vec-
tor comprising 9 features: from the set of RSSI values of
packets received in a time window, the nine percentile val-
ues corresponding to 10th, 20th, ..., 90th percentile are drawn
as features. The ground truth for the corresponding time win-
dow is appended to the generated feature vector. If no packet
is received in a time window, a dummy packet having RSSI
of -95 dBm, close to the radio sensitivity level, is considered
to have been received. The collection of all data points thus
obtained comprises the training dataset. This is used to train
classification models either using SVM or K-Means. In the
testing phase, similar feature vectors are created from wire-
less data over the same time windowt. Then eacht is labeled
as free-flow or congested based on the training model.

SignalClassifier (SC) algorithm - This meta-classifier
alternative to FeatureClassifier, uses majority voting on per-
packet congestion predictions. In the training phase, we ob-
tain a per-packet classifier using K-means or SVM, by con-
sidering only the packet RSSI as a feature. In the testing
phase, for eacht, we employ the per-packet classifier ob-
tained in the training phase on each received packet, ob-

taining a label for each packet. Considercount(t)congestionand

count(t)f ree f low to be the number of packet-level congestion
and free-flow predictions in a time slott. We predict con-

gestion in the time slot ifcount(t)congestionis greater than or

equal tocount(t)f ree f low and free-flow otherwise. We evalu-
ate the four algorithms:1) FeatureClassifier using SVM, 2)
FeatureClassifier using K-Means, 3) SignalClassifier using
SVM, and 4) SignalClassifier using K-Means, on our labeled
dataset. Fig. 7 and Fig. 8 show the training errors of the
FeatureClassifier and the SignalClassifier algorithms respec-
tively. As we can see, FeatureClassifier using K-Means out-
performs the other algorithms in terms of accuracy. Also,
the classification error of SignalClassifier is not as well be-
haved as FeatureClassifier, and is surprisingly higher for the
supervized SVM algorithm than the unsupervized K-Means
algorithm. This is due to the increased label noise in trans-
lating the ground truth of a 5 minute time window to each
packet received in that window.

The accuracy for FeatureClassifier using K-Means is

131



Figure 11: Sensing on narrow
road
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Figure 12: CDF of PRR with d” variation
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Figure 13: CDF of RSSI with d” variation

above 90%, when the classification time window is at least
20 seconds, shown by a vertical line in Fig. 7. Hence, we
choose FeatureClassifier using K-Means andt as 20 seconds
in our Kyun Queue system. The graphs presented here are
for the wide-road dataset, but we observed similar results for
the narrow-road dataset as well.
3.5 Choice of features

RSSI, LQI and Packet Reception Rate (PRR), all showed
good visual difference in distributions between free-flowing
and congested road traffic. But there are several IEEE
802.15.4 compliant radios like XBEE3, which do not report
LQI values. Thus we seek to understand the effect of not us-
ing LQI for traffic classification. Using the wide-road data,
we plot the training error of an SVM classifier in Fig. 9. In-
terestingly, RSSI percentile-based features yield better ac-
curacies than using additional percentile features based on
LQI and PRR. The reason for this non-intuitive observation
is that RSSI is much more strongly correlated with line-of-
sight than LQI or PRR.

This strong correlation of RSSI with line-of-sight is also
evident from an experiment that we perform on the narrow-
road. The goal of the experiment is to observe the effect
of distance between transmitter and receiver, on the mea-
sured wireless link characteristics. The experimental setup
is shown in Fig. 11. Directly measuringd′ is difficult on a
busy road with vehicles passing by. So we measured′′.

Keeping the transmitter fixed, we move the receiver from
d′′=5m tod′′=40m in steps of 5m and let the receiver log for
5 minutes at each position. We do this both in free-flowing
and congested conditions. The CDF of reception and RSSI,
for both traffic states, are shown in Fig. 12 and 13 respec-
tively. LOS indicates line-of-sight condition in free-flow and
NLOS, non line-of-sight condition in congestion. We show
the plots only for 15m, 20m, 25m and 30m to prevent the
figures from getting cluttered.

As we can see, both free-flow (LOS) and congested
(NLOS) traffic show almost identical PRR ford′′

< 25 m.
This is because, signal quality is quite good at small dis-
tances such that NLOS does not have much effect on the
reception of packets. RSSI, which directly measures sig-
nal quality, however, shows good difference between the two
traffic states even for smalld′′ (Fig. 13) . Thus if PRR has
to be useful as a feature to detect traffic state on a narrow

3Weuse XBEE radios in our hardware prototype.

road, the tx-rx pair have to be placed diagonally across that
road, instead of being perpendicular, to increase the effective
distance between them. But such road specific sensor topol-
ogy adjustments can be avoided, if RSSI alone is used as a
feature.

3.6 Classification models: summary
Thus we use FeatureClassifier algorithm with K-Means

model built over 20 secs of RSSI percentiles in ourKyun
Queue system. The deployedKyunQueue system, described
in Section 6, uses the training model built from the 8 hour
dataset collected from the same road, with approximately 4
hours of free-flowing and 4 hours of congested data. Effi-
cient training model building for varieties of roads and to
detect drifts in model with time and environmental changes
are interesting aspects of future work.

4 Design of theKyun Queue system
As seen in the previous sections, one pair of tx-rx across

road can infer the road occupancy level between them with
significant accuracy. Next we seek to extend this pairwise
sensing to build an array of sensors, which can perform co-
ordinated sensing and detect length of traffic queue on a
given stretch of road.
(1) Three pairs of transmitter (Ti) - receiver (Ri) are shown
as example. Each pair performs sensing and computation
to know the traffic condition between them. The number of
pairs to be placed on a given road stretch, would depend on
the worst case length of traffic queues on that road.
(2) The individual observation of eachTi-Ri pair, can be com-
municated to a central controller unit (C), that may reside on
the traffic light. C, upon receiving the road occupancy obser-
vation values from sensors on each incoming lane, can com-
pute the optimal green light distribution. This can handle
applications local to a particular intersection. e.g. minimiz-
ing worst case waiting delays.
(3) C can communicate with a server (S), that may reside in a
remote traffic control office. The server, upon receiving road
occupancy information from several controller units of the
city-wide road network, can implement other applications
like co-ordinated signal control, bottleneck identification and
congestion mapping.

4.1 Architecture
The proposed system architecture is shown in Fig. 14.
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Figure 14: System Architecture

4.2 Which RF technology to use for sensing
Though we start with 802.15.4 to sense traffic as we have

easy access to Telosb motes, we also experiment with 802.11
a, b and g radios and Bluetooth. The experimental setup is
similar in all cases. We keep a tx-rx pair across road, at about
0.5 m from the ground and measure RSSI and packet recep-
tion rate at the rx. Power requirements for 802.11 a/b/g are
higher than 802.15.4 [32]. Bluetooth shows an issue of poor
range and links are hard to establish for wide roads of 25 m.
Secondly, being a connection oriented protocol, it has issues
of long delays in re-establishing connection following packet
losses. Thus, though all the technologies are affected by con-
gestion to some extent and can perhaps be used for traffic
sensing – based on accuracy, power, range, form-factor etc.,
802.15.4 seems to be a better choice than the others.

4.3 Sensing and communication conflicts
In our system, we have two types of wireless links – (1)

sensing links, across the road, from T to R and (2)commu-
nication links, along the road, from one R to another R. The
sensing linksshould be affected by the traffic flow on the
road, so that wireless link characteristics measured on them
reflect the traffic volume. This necessitates the radios on T
and R to be at a low height of about 0.5 m from the ground
level, such that the packets are blocked by the body of the ve-
hicles. On the other hand, in a typical deployment scenario,
the R units will be mounted on road-side lamp-posts. Inter
lamp-post distance is in the order of 30 m. Even if we put our
units on each lamp-post, any network fault might need units
on alternate lamp-posts to communicate. Thus, we should
keep provision for at least 60 m longcommunication links.
These links have to be reliable as well. The question thus
arises: can a single radio handle both sensing and commu-
nication links with conflicting requirements? This is verified
next, through a set of experiments.

Figure 15: Obstacles on sidewalk: pedestrians and
impatient motorcyclists too!

We keep a Telosb mote stationary which transmits 25
packets per second. Another mote is kept at distance x m
from the transmitter; we vary x=30 m to x = 100 m, in
steps of 10 m, logging number of packets received for 5
minutes at each distance. Both motes are 0.5 m above the
ground. They are placed along the road, on the sidewalk of
Adi Shankaracharya Marg, instead of being placed across the
road like in previous experiments, since we want to evaluate
the communication and not the sensing links. We do the ex-
periment once at 6 am in the morning, when the sidewalk is
empty and again at 8 pm in the evening, when the sidewalk
is crowded with pedestrians (see Fig. 15) and repeat both ex-
periments over four days.

Figure 16: Sensor pair setup

The median packet reception ratio (PRR) is 60% at 60
m at 6 am. The link quality degrades at 8 pm when pedes-
trians on the sidewalk block the line of sight between the
motes. Median PRR is at most 40% at any distance above 30
m. Such low PRR would make our communication links un-
reliable, and hence unsuitable for applications like adaptive
traffic signal control, where timeliness is critical.

To resolve this issue, we choose to usetwo 802.15.4 ra-
dios in our receiver (R) units - one XBEE radio for sensing
and a CC2520 radio for communication. The setup for a tx-
rx pair is shown in Fig. 16. T is the tx unit across the road
containing a microcontroller and an XBEE radio to transmit
sensing packets. R is the rx unit with a microcontroller, an
XBEE radio to receive sensing packets and a CC2520 radio
to communicate to other R’s. The CC2520 antenna is placed
higher using RF cable, at about 2 m from the ground, clear
of pedestrians on the footpath. Other possible design choices
to handle the sensing-communication conflict, are discussed
in Section 8.

4.4 Software protocol
To correlate the traffic state decisions of different R units

and calculate the queue length, we have to ensure that
all R’s perform sensing and computation simultaneously,
so that their individual measurements are co-ordinated in
time. Since our architecture has a C unit, we choose to
use centrally controlled measurement cycles, triggered by
C, to achieve this. Thus we do not need any explicit time-
synchronization mechanism among the units.

One possible way to design the software flow of our net-
work is outlined in Fig. 20. The R units remain in receiver
ready mode of CC2520 radio (C-RDY) on power up, waiting
for a control message. C, on power up, asks for the current
time from a server over GPRS and initializes its real time
clock. C then sends a control message which each R re-
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Figure 17: Transmitter (T) Figure 18: Receiver (R) Figure 19: Controller (C)

Figure 20: Software flow

ceives and transmits to the next R. After transmission, each
R starts sensing the incoming packets from T on the XBEE
radio and computes its binary decision of traffic state based
on the algorithm described in Section 3. Once this decision
is ready, each R enters receiver ready mode of CC2520 radio
(D-RDY), waiting for the data message from next R. The last
R creates a data message to send its decision to the previous
R. Each R, upon receiving the data message from next R, ap-
pends its own decision to the message and transmits it to the
previous R.

When the data message reaches C, it writes the data mes-
sage, along with the time of its reception, in the Micro-SD
card. This ensures retention of data and control state in-
formation, in case C reboots or server communication goes
down temporarily.C can compute the traffic signal schedule
from the queue length information in the data message.4 All
R units go back to C-RDY after transmitting data message.
C appropriately sends the next control message, when it in-
tends to start the next measurement cycle and this goes on in
a loop. While the R’s do sensing and computation, C reads
the Micro-SD card and sends the data message of the previ-
ous cycle to the server over GPRS. The server can use this
informationfrom different C units in the city for co-ordinated
signal controlor for visualization of congestion maps.

Next we consider the MAC protocol to use in our net-

4The italicized parts of the software flow like traffic light schedule com-
putation and co-ordinated traffic signal control have not been implemented.
Negotiations for these are currently under progress with [9].

work. TDMA needs strict time-synchronization among
units. On the other hand, by design, both our control and data
messages are transmitted sequentially by one R followed by
the next R. Thus simple CSMA-CA can handle our MAC is-
sues, and this is what we use in our network. To increase
reliability, all messages are transmitted four times. If there
is still a message loss, our design handles it by using a time-
out in D-RDY state. Upon timeout, the unit goes back to
C-RDY state and participates in the next measurement cycle
when the next control message comes. Thus the fixed num-
ber of retransmissions allows us to achieve a good balance
between resilience to stray wireless losses and implementa-
tion complexity.

C keeps track of the current measurement cycle number
by generating and inserting a sequence number in the control
message. If C reboots, it looks up the last sequence number
from the Micro-SD card and generates the next one. If an R
reboots, it simply waits in C-RDY and copies the sequence
number of the first control message it gets, as the current se-
quence number. None of the R’s can generate a sequence
number. This ensures that though the sequence numbers
wrap around after 0-255, there is no stale sequence number
in the network. Thus units can confidently reject messages
containing sequence numbers already seen or which are out
of order, as retransmitted messages.

If the C and R nodes are arranged along a road, as shown
in Fig. 14, this software protocol uses links between C and
R1, the firstRi along the road, and then between eachRi and
Ri+1. Our system, using dual radio, has provision for longer
communication links betweenRi andRi+2, which the cur-
rent software does not utilize. All the messages are routed
along the hardwired path of consecutive{Ri,Ri+1} pairs. The
longer links may be used for RSSI based self-localization,
which we discuss in Section 7. Also in future, faults where a
particularRi fails or link between any consecutive{Ri,Ri+1}
fails, can be detected or corrected using the longer links.

5 Hardware prototypes
Based on the design choices outlined above, we have im-

plemented three hardware prototypes for T, R and C. The T
units have (1) an Atmel AT89C51RD2 microcontroller and
(2) an XBEE radio on UART to transmit sensing packets. In
the R units, we have used (1) a TI C5505 ezdsp stick for the
computation, (2) a TI CC2520 radio connected on SPI for
communication with other R units and the C unit and (3) an
XBEE radio on UART for sensing. Four 1.5V batteries are
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connected in series to provide 6V power to each circuit. The
C unit has (1) a TI C5515 ezdsp stick for processing with (2)
an integrated Micro-SD card for data storage. There is (3)
a TI CC2520 radio on SPI to communicate with the R units
and (4) a SIMCOM SIM300C GPRS modem to communi-
cate to a server. An 11.1V, 1 Amp peak current battery is
used for powering up this circuit.

The choice of the TI ezdsp sticks are for their small form
factors, low cost, low power requirements and convenient
pinouts of several interfaces like UART and SPI. These make
hardware integration easy. The vast resource of TI chip sup-
port library functions and up to 100 MHz clock rates make
programming on these platforms convenient as well. The
two IEEE 802.15.4 compliant radios, needed in the R units,
are chosen to be CC2520 and XBEE. This is because they
use two different interfaces of SPI and UART respectively,
which simplifies prototype design and implementation.

A C5505 ezdsp stick costs $50, a C5515 ezdsp stick costs
$80, a GPRS modem costs $70, an XBEE radio costs $18, a
CC2520 radio costs $50, an AT89C51RD2 microcontroller
costs $4. With interfacing PCB’s, connectors and batteries,
a receiver (R) - transmitter (T) pair costs about $200 and the
controller (C) costs about $250.

6 Deployment based evaluation
What is the accuracy of online traffic state classification

by a single sensor pair? What is the accuracy of queue length
estimates given by a network of such pairwise sensors? Are
the queue estimates available in real time at the server? Can
we see any pattern in the queue lengths over a day or between
days? We seek to evaluate these questions through a deploy-
ment of our sensor network. We perform all our experiments
on a stretch of Adi-Shankaracharya Marg road in Mumbai.
This road is about 25m wide and has fair amount of traffic
throughout the day as it connects two express highways.

To evaluate the accuracy of online classification, we place
a T unit on a divider lamp-post and an R, perpendicularly
across the road on the sidewalk lamp-post. R has a stored
K-Means clustering model using nine RSSI percentile val-
ues corresponding to 10th, 20th, ..., 90th percentile, measured
over t = 20 secs, as features. This model is computed of-

Figure 21: Deployed Units

fline from the 8 hours (approximately 4 hours each of free-
flowing and congested traffic) dataset, collected on the same
road about one year back. Using the stored model, we then
run the online FeatureClassifier algorithm on R, to classify
chunks of 20 seconds of RSSI percentiles of packets coming
from T. We experiment for 50 minutes in each of free-flow
and congested traffic. 149 out of 150 data points are cor-
rectly classified as free-flow and all of 150 data points are
correctly classified as congested. Thus overall accuracy of
online classification on this particular set of unseen test data
points is 99.67%.

Figure 22: View from Android Phone

Next we seek to evaluate the accuracy and timeliness of
queue estimates given by our network of sensors. We deploy
one C unit on a lamp-post near to the traffic signal and five
T-R pairs on the next five consecutive lamp-posts. All units
are packaged in ABS plastic boxes with holes to bring out
the XBEE and CC2520 radio antennas. The C and the R
units are clamped to lamp-posts on the sidewalk, at about
0.6m above the ground. Their CC2520 antennas, connected
to the radio external ports with RF cables, are tied vertically
to the lamp-posts at 2m above the ground. The C unit has an
additional GPRS antenna. The T units are clamped to lamp-
posts on the divider, perpendicularly opposite to the R units,
such that a T-R pair face each other across the road. The
deployed units and the deployment site are shown in Fig. 21.
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Figure 23: 6 - 9 pm, Nov 17, 2011, Saturday

We implement our designed software for this deployed
network, such that C initiates a new measurement cycle
through a control message every 30 secs. The R units sense
for 20 seconds each and compute individual binary decisions
about the traffic state. These decisions are communicated to
C in a data message. C stores the message in Micro-SD card
and also sends it over GPRS to a remote server. The message
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Date # of detections % Exact matches % Error of 1 unit % Error of 2 units % Error of 3 units
(about 30m) (about 60m) (about 90m)

Nov 17 359 74.09 20.05 4.45 1.39
(fp=14.76, fn=5.29) (fp=2.23, fn=2.23) (fp=1.39, fn=0)

Nov 18 359 96.37 1.67 1.39 0.56
(fp=1.67, fn=0) (fp=1.39, fn=0) (fp=0.56, fn=0)

Nov 19 353 90.93 7.64 1.97 0
(fp=3.39, fn=4.24) (fp=0.28, fn=1.13) (fp=0, fn=0)

Overall 1071 87.11 9.8 2.4 0.65
(fp=6.62, fn=3.17) (fp=1.3, fn=1.12) (fp=0.65, fn=0)

Table 2: Accuracy and error breakups of deployment results

is in the form of an array of 5 binary values, each signifying
decision by an R, in increasing order of the lamp-posts from
the C unit. The server logs these updates coming every 30
seconds and computes the queue length as the unit number
of the last R reporting congested state. Thus our measured
queue lengths can take 6 discrete values: 0, where all R’s re-
port free-flow, 1 when only R1 reports congestion while the
others report free-flow, 2 when R1 and R2 report congestion
while others report free-flow, 3, 4 and finally 5, when all R’s
report congestion. We run this deployed network on Nov 17,
Thursday, Nov 18, Friday and Nov 19, Saturday, 2011, for 3
hours everyday, between 6-9 pm.

To know the accuracy of our measurements, we use an
image-based manual verification scheme. We run an An-
droid application on a Samsung Google Nexus phone to cap-
ture an image every 30 second and store it. The phone is
placed on the roof of a four storeyed building by the road-
side. The phone can cover T-R pairs 1, 2 and 3. We tried
different apartment buildings by the roadside and different
orientations and zoom-levels on the phone, but this was the
maximum number of sensors that we could cover. The view
from the phone is shown in Fig. 22. In the figure, C is further
to the left of sensor pair 1 and T-R pairs 4, 5 are further to the
right of sensor pair 3. The images for the three days can be
viewed at [31]. One person observes the images offline and
estimates the queue lengths manually. In case this observer
finds it difficult to estimate the length from the image, a sec-
ond observer is consulted and the queue length is ascertained
by their mutual consent.

The accuracy and break up of errors of our deployment
results are summarized in Table. 2. Error of 1 unit indicates
that our queue estimate and the ground truth differ by 1. This
in turn can be a case of false positive (fp) or false negative
(fn). The false positives and false negatives are determined
in the following way. The viewer of the image determines
the current queue length by seeing the image. This is consid-
ered as the ground truth. If the queue length reported by our
sensor system is more than the ground truth queue length,
that is considered as false positive, as we are overestimating
the queue. Similarly, if the reported queue length is less than
the ground truth queue length, that is considered as false neg-
ative, as we are underestimating the queue. Error of up to 3
units can occur, as images cover units 0-3.

Fig. 23, Fig. 24 and Fig. 25 show the length of the queue
as measured by our system on the three consecutive days re-

spectively. To aid visual comparison with ground truth which
covers up to unit 3, we plot both the actual queue values re-
ported by our system, termed asactual sensed datain the fig-
ures, and the min(3,actual sensed data), termed asbounded
sensed datain the figures.
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Figure 24: 6 - 9 pm, Nov 18, 2011, Saturday

As we can see from Table 2, the accuracy is upto 96% on
Nov 18 and Nov 19. Of the three days, Nov 17 has minimum
accuracy: 74%. But as seen from Fig. 23, queue buildup
and clearing was very rapid on that day, increasing the chal-
lenge of deciding queue length by manual observation. So
our low accuracy is likely a combined effect of our errors
and errors of manual ground truth estimation. For example,
the instant the image is taken, the queue might have cleared
but it might have been present for most of the 20 seconds
of sensing, leading to a false positive. A case of false nega-
tive would occur if a queue builds up the instant the image is
taken, while most of the sensing time, traffic is free-flowing.
A better way of ground truth estimation would be to take
continuous video, instead of an instant image, and we accept
this to be a limitation of this work. False negatives are rare
for the error values of 2 and 3, as instant growth and reduc-
tion of long queues is non intuitive. But even on Nov 17,
almost all the errors are only of one unit and higher errors of
2-3 units, given in the last two columns of Table 2, are very
low. The above results indicate that, theKyun Queue sys-
tem is accurate in estimating traffic queue lengths, and shows
good promise for use in applications such as automated traf-
fic signal control.

An interesting point to note from the figures is: queue
length can be fairly variable (1) over three hours on a single
day, as seen in Fig. 23, (2) between two week days at the
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same time of the day, as seen between Fig. 23 and Fig. 24
and (3) between weekdays and weekend, as seen between
Fig. 23, Fig. 24 and Fig. 25. This variability further moti-
vates the usefulness of our system in building applications
like dynamic traffic light control, to make traffic manage-
ment more reactive to current traffic status.

An interesting aspect of evaluating our system would be
to compare it with other existing sensing mechanisms like
images and IR. However, direct comparison with the current
implementations would be biased towards our system, be-
cause the other implementations are meant to be used in or-
derly traffic. We however, have specifically built our system
to handle chaotic traffic. Re-implementing all other tech-
niques for chaotic traffic ourselves, on the other hand, is def-
initely beyond the scope of one technical paper.
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Figure 25: 6 - 9 pm, Nov 19, 2011, Saturday

7 Self localization
We have thus far evaluated the effectiveness of theKyun

Queue system. However, to calculate the traffic queue length
from individual R decisions, the ordering of the R units with
respect to C has to be known, to correlate which R decision
represents which part of the road. In this section, we ex-
plore whether we can have a built-in localization module, to
configure this sensor ordering without manual intervention.
This will be useful in real-life deployment scenarios, where
hundreds of such networks will be needed to be set up, one
network for every road intersection in a city.

We can have statically addressed R’s and deploy them
carefully in a pre-defined order along the road. Then each
R unit will have to be programmed with a different software
containing a different node-id, and deployment also has to
be careful to obey the ordering.5 A second option is to have
a keypad attached to every R. All R’s are programmed with
the same software and deployed in any order. After deploy-
ment, keys are pressed at each R, to enter the addresses in
increasing order along the road. A third option is to use a
GPS-enabled smartphone during deployment and record the
GPS co-ordinates corresponding to each sensor ID. All these
need technical proficiency of the deployers, an unnecessary
additional requirement.

A fourth option is to use RSSI ranging, as both R and the
C have CC2520 radios with antenna anyway. The R’s are
at gradually increasing distance from C, which might reflect

5This is what we do in our current deployment.

in the RSSI of packets sent by C and received at the differ-
ent R’s. We experimentally verify the fourth option, as it
promises minimum cost and deployment overhead.

Self localization of sensor nodes is one of the most re-
searched areas in the field of sensor networks. But strangely,
none of the proposed solutions are used in actual deploy-
ments to the best of our knowledge. Most deployed net-
works [33, 34], have statically addressed nodes, carefully
placed in pre-decided locations. Some deployments handle
applications like bridge monitoring [35], flood [36] or for-
est fire [37] detection, each of which compulsorily needs the
location of the sensed data. But the localization procedures
are not specified in these papers. A few like [38] have used
GPS to determine sensor location. [39] recently attempted
to approximately localize a very large deployment of sensor
nodes using RSSI ranging.

The main challenge in using RSSI is that, it is not a mono-
tonically decreasing function of distance. The theoretical
two-ray ground refection model has found strong empirical
evidence in [35], which shows that RSSI oscillates with dis-
tance due to multipath interference. When we plot the two-
ray model equations in Matlab, lower antenna heights seem
to give less oscillations (Fig. 26). But our deployment loca-
tion being road-side lamp-posts on the sidewalks, very low
antenna height will affect communication among R’s due to
obstruction by pedestrians, as experimentally shown in Sec-
tion 4. This will defeat our purpose of having a dual radio
platform. A minimum height of 2 m seems to be necessary,
considering average human height to be less than that.

Secondly from Matlab plots, vertical polarization seems
to give far less oscillations than horizontal polarization
(Fig. 27). We seek to verify this experimentally, by placing
a CC2520 transmitter on a lamp-post and moving a CC2520
receiver gradually away from one lamp-post to the next, with
antenna at 2 m height for both radios. The CDF’s of RSSI are
plotted in Fig. 28. The two antennas are first placed horizon-
tally, perpendicular to the lamp-post, pointing towards the
sidewalk, denoted byi-h in Fig. 28, 2<= i <= 6 being the
five consecutive lamp-posts where the receiver radio is kept.
Another set of readings are taken by keeping the antennas
vertical, parallel to the lamp-posts, denoted byi-v in Fig. 28.
According to the order of the RSSI CDF’s, the lamp-posts
would be ordered as{node 2, node 3, node 5, node 6, node
4} for horizontal and{node 2, node 3, node 6, node 5, node
4} for vertical orientations of the antenna. The re-ordering
of lamp-posts occur independent of antenna orientation and
hence polarization. A secondary thing to note is, vertical
orientation gives worse RSSI values than horizontal; this is
likely due to fading effect of the metal body of the lamp-post
with which the vertical antenna is parallel.

[40] proposed that by using different 802.15.4 channels,
the average RSSI over the channels would have less oscil-
lations. But our Matlab plots show little difference for the
16 channels, four of which are plotted in Fig. 29 as exam-
ple. Thus none of the parameters like antenna height, po-
larization or channel, seem to be useful to remove the RSSI
oscillations.

We can see the effect of these oscillations in Fig. 30 and
Fig. 31. Fig. 30 shows CDF of RSSI of packets received at a
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Figure 26: Height Effect (simulated)
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Figure 27: Polarization (simulated)
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Figure 28: Polarization (empirical)
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Figure 29: Channel Effect
(simulated)
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Figure 30: Sender at lamp-post A
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Figure 31: Sender at lamp-post B

receiver CC2520, which is moved from one lamp-post to the
next, keeping a transmitter CC2520 fixed at one lamp-post.
This is repeated by keeping the transmitter in another lamp-
post (Fig. 31). According to the order of RSSI CDF’s, we
would order the lamp-posts as{node 2, node 5, node 4, node
6, node 3} and{node 2, node 5, node 6, node 4, node 3}.
The transmitter-receiver distances for the five positions are
31, 70, 95, 116 and 144 meters and 39, 64, 85, 113, 140 me-
ters respectively. Distances 31 and 39 m have the best RSSI,
being at the initial steep drop region of the curve (Fig. 29).
70 and 64 m have the worst RSSI, being at the lowest dip
region of the curve. Remaining distances have comparable
RSSI, lying in the final flat part of the curve. Thus the RSSI
closely conforms to the 2-ray model (Fig. 29). Thus an exact
match between lamp-post order and RSSI order seems dif-
ficult, if not impossible, even within a single road stretch!
The RSSI oscillations are compounded by the fact that inter
lamp-post distances vary as well. We measured inter lamp-
post distances of 20, 31, 39, 25, 21, 28, 27 and 29 meters in
our deployment location.

On the brighter side, our results above indicate that the
following rule of thumb may work: transmit packets from C
and measure RSSI at all R’s. The R recording the best RSSI
is marked as the first node. Now this first node transmits
packets and all other R’s measure RSSI. The R recording the
best RSSI is marked as the second node. This process con-
tinues iteratively, until all the R’s are marked. Localization
is a one time process, at the time of initial deployment, so
the duration of the process is not a concern.

Moreover, since the growth of traffic queue lengths gen-
erally follow a typical pattern of growing outwards from the
signal, the sensor pairs near the signal will typically detect
congestion earlier than the pairs away from it. Thus even if
one or more sensors are wrongly localized, comparison of
the reported congestion values by all pairs over some days,
should identify the localization inversion.

With the multitude of literature on localization using
RSSI [26, 27, 28, 29], one might think that localizing a linear
array of sensors based on signal strength will be trivial. How-
ever, as we empirically show, the process is not straightfor-
ward and there are several challenges that come up. Finally
we propose a simple iterative mechanism that might work in
practice.

8 Discussion and future work
In this section we discuss some aspects relevant to our

system and outline a few areas of future work.
Interference issues - If all the T units transmit on the

same channel, hidden node problems can occur in our net-
work. For example, as shown in Fig. 32(i)(a), T1 and
T3 might transmit simultaneously, though XBEE radios use
CSMA/CA, as they might not hear each other. Collision
might happen at R1, if it can hear both T1 and T3, which
is possible because of wireless link asymmetries. 802.15.4
has 16 orthogonal channels. Thus each T-R pair can poten-
tially use a different channel to avoid intra-network interfer-
ence. But inter-network interference can still occur, because
of Wi-Fi interference from nearby 802.11 access points.

Fortunately, interference does not affect RSSI of received
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Figure 32: Interference & duty-cycling

packets [41, 42]. If Clear Channel Assessment (CCA) is dis-
abled at tx, it stops holding back packets in presence of inter-
ference [43]. If Cyclic Redundancy Check (CRC) is disabled
at rx, all packets, even with bits corrupted by interference
would be passed to the application layer. Since we use only
RSSI for sensing, the actual packet content is irrelevant to
us. Disabling CCA and CRC, increases number of received
packets in presence of interference, using RSSI of which,
our technique would work fine. Only the communication of
sensed data needs an interference free channel, as there the
actual packet contents are important. But for this we can use
802.15.4 channel 26, which lies outside the 802.11 spectrum.
Our preliminary experiments disabling CCA and CRC show
the usability of all channels for sensing, even in presence of
heavy 802.11 interference. This will be explored further in
future.

Power consumption - Battery life saving is not a very
crucial requirement for our system, as our units are deployed
on street lamp-posts with constant power supply from grid
lines. Still, to get a power budget for the batteries used in our
prototype deployment, we explore our system power con-
sumption. The T units perform 20 XBEE tx operations per
second. The R units, in every measurement cycle spanning
30 secs, receive at most 400 XBEE packets during sensing,
perform one classification operation and receive and trans-
mit at most eight CC2520 messages. The C unit, in every
measurement cycle of 30 secs, performs one GPRS commu-
nication, two SD card operations and receive and transmit at
most eight CC2520 messages. The power consumed for each
individual operation is given in Table 3.

Function mW Function mW
C5505 operations 213 GPRS 2016

CC2520 tx (0 dBm) 167 CC2520 rx (0dBm) 610
XBEE tx (0 dBm) 390 XBEE rx (0 dBm) 540

Table 3: Function Specific Power Consumption

A power optimization approach, that we may consider in
future, is as follows. It might be unnecessary to keep all
T-R pairs functioning at all times. For e.g., in our Nov 19
deployment (Fig. 25), the first two sensor pairs would have
been enough to detect queues. A simple duty-cycling mech-
anism can be as follows. The pair nearest to the signal re-
mains awake at all times. If this pair sees congestion for
more than a threshold number of cycles, the next pair wakes

up. This continues as the queue grows and the whole net-
work gradually comes up. This is illustrated in Fig. 32(ii),
where dark rectangles denote nodes which are awake and the
others denote sleeping nodes. Some power can also be saved
by suppressing updates that can be inferred by correlating
other updates [44].

Classification schemes and model training - Semi-
supervized training of the classification models for different
kinds of roads will be studied, to balance between overhead
of manual labeling in supervized learning and noise in un-
supervized methods. Secondly, whether classification model
built for one road works on other roads, will be explored.
Specifically, we will try to identify characteristics like road
width and vehicle types, that affect model parameters, and
subsequently see if roads similar in those characteristics can
use the same model with sufficient accuracy. Thirdly, instead
of binary classification of traffic states by each sensor pair,
whether multilevel classification of (a) empty road, (b) fast
traffic, (c) slow traffic and (d) standing traffic is achievable
with a single sensor pair, using an enhanced set of features
and algorithms, is another area to explore. Fourthly, classi-
fication model drift with time due to effect of weather and
other environmental factors would be studied over long-term
data, with special focus on automatic drift detection applying
concept drift theory of machine learning. Also the minimum
amount of training data required to achieve a given classifi-
cation accuracy will be interesting to quantify.

Other design choices -Finally, it will be interesting to
try different network topologies, instead of the linear array,
to reduce hardware overhead. An example star-topology is
shown in Fig. 32(i)(b). A second design choice to explore,
would be to replace the dual radio solution with single radio,
which has two antenna ports [45]. We might attach an ex-
ternal antenna to one port and keep the other empty and can
select the former for communication and latter for sensing,
dynamically in software. A third design choice to explore
is the use of directional antennas. Such antennas have fairly
low costs and they have been shown to improve the stability
of wireless links [46]. This may render the RSSI measure-
ments to be less susceptible to oscillations, possibly further
improving the detection accuracy. Further, customized plat-
form design and cheaper radios and microcontrollers will be
considered to bring down overall system costs.

9 Conclusions
Traffic monitoring in developing regions poses a set of

challenges, not met fully by existing systems. In this paper,
we have designed and implemented a new sensing system
to detect road occupancy based on RF link quality degrada-
tion. We have also designed and implemented a sensor net-
work to distributedly decide traffic queue length in real time.
Our system, deployed on a Mumbai road, achieves upto 96%
accuracy in queue length estimation. Thus it shows good
promise to be immediately useful for a variety of applica-
tions in real situations.
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